US009348712B1

a2z United States Patent (10) Patent No.: US 9,348,712 B1
Dongre et al. (45) Date of Patent: May 24, 2016
(54) POLICY-BASED VOLUME CACHING IN A g,gg%géz g%: }8@81 é (A}llenlet al. [;(1) é; g;
s A opalan et al. .
CLUSTERED STORAGE SYSTEM 2002/0038301 Al* 3/2002 Aridoretal.cc...c...... 707/10
2002/0059440 Al* 5/2002 Hudson etal. 709/231
(75) Inventors: Rommel D. Dongre, Sunnyvale, CA 2002/0091788 Al* 7/2002 Chlanetal. 709/213
(US); Michael R. Eisler, Colorado 2003/0225924 Al* 12/2003 Jungetal. 709/313
Springs, CO (US); Andrew Narver, 2005/0129016 Al* 6/2005 Taninaka et al. ... 370/389
Sunnyvale, CA (US) 2006/0206662 Al* 9/2006 Ludwigetal. 7117114
’ 2007/0038644 Al* 2/2007 Kanedaetal. 707/10
. 2007/0180119 Al* 82007 Khivesaraetal. 709/226
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US) 2007/0189153 Al* 872007 Mason 3701216
2007/0244908 Al* 10/2007 Rajancooenene. 707/10
(*) Notice: Subject to any disclaimer, the term of this 2007/0288586 Al* 12/2007 Wuetal. 709/212
patent is extended or adjusted under 35 2008/0147972 Al* 6/2008 Allison etal. 711/113
U.S.C. 154(b) by 189 days. 2008/0235400 Al* 9/2008 Slocombeetal. ... 709/245
2009/0100496 Al* 4/2009 Bechtolsheim et al. 725/147
2009/0132639 ALl* 52009 Yan ..o 709/202
(21) Appl. No.: 12/976,803 2009/0150534 Al* 6/2009 Miller et al. 700/223
. 2009/0164635 Al* 6/2009 Denkeretal. ... 709/226
(22) Filed: Dec. 22,2010 2009/0172274 Al* 7/2009 Nochimowski et al. 711/114
(51) Int.CIL (Continued)
gzgﬁ 5253 888288 Primary Examiner — Thuong Nguyen
GO6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Nixon Peabody LLP
GO6F 3/06 (2006.01)
HO4L 12/54 (2013.01) (57) ABSTRACT
HO4L 12/26 (2006.01) . o . . .
(52) US.Cl Described herein is a novel technique for implementing a
CPC) GOGF 11/2087 (2013.01); GOGF 3/0631 policy-based caching engine in a storage system cluster (clus-
""" (2013 01); GO6F 17730902 (2’013 01); HOAL ter) to automatically implement volume caching at select
12/5695 (2’013 01); HO4L 430817 (20’13 o1) nodes of the cluster in optimizing cluster performance. The
(58) Field of Classifica tion.Sea’rch ’ novel caching engine may be implemented in a management
CPC GOGF 11/2087: GOGE 17/30902: GO6F console of the cluster storing policy information related to
""""" 3/0631- H04L’l2/5695' H04L 43/0817 volume caching operations requested by the caching engine.
USPC 709/22‘4 121.216 21§ 296, 245. 203 Policy information may include node or cluster attributes,
""""" 370/3,89 4;67' 7’11/3’ 114’ 113’ 118, operational events, and a pre-defined cached volume configu-
’ ’ ’ ’ 71 ,l 1 37’ ration of import to the user. Based on the stored policy infor-
See application file for complete search histo mation, the caching engine may determine a set of nodes on
PP P R4 which to initiate a volume caching operation and generate a
. request for such operation to be performed on a particular
(56) References Cited q f h operati be perf d particul

U.S. PATENT DOCUMENTS

6,345,338 B1* 2/2002 Mililloetal. 711/137
7,596,564 B1* 9/2009 O’Connell et al.
7,895,244 B1* 2/2011 Sobeletal. 707/809

Caching Engine
300

Policy Engine
310

Monitoring Engine
320

Requesting Engine
330

node. Only select nodes in the cluster may thus implement
volume caching to thereby conserve processing resources for
more critical operations at other select nodes in the cluster.

21 Claims, 8 Drawing Sheets

Attribute List
410

Event List
420

Caching Policy
430

Node Caching List
440

US 9,348,712 B1

Page 2
(56) References Cited 2012/0011394 Al* 12012 Makietal. ... 714/6.3
2012/0036161 Al* 2/2012 Lacapra et al. 707/781
U.S. PATENT DOCUMENTS 2012/0047561 Al* 2/2012 Bloesch 726/4
2012/0210041 Al* 82012 Flynnetal. ..o 711/3
2009/0282125 Al* 11/2009 Jeideetal. .oovvovvccvvviiiinn, 709/217 2012/0303575 Al* 11/2012 Crolene et al. 707/609
2010/0010991 AL* 1/2010 JoShi oo 707/5 2012/0303737 Al* 11/2012 Kazaretal. 709/213
* 2013/0044765 Al* 2/2013 Chenetal. 370/401
2010/0146045 Al 6/2010 Mooreetal. 709/203

" . 2013/0304844 Al* 11/2013 Lango et al. .. 709/216
2010/0174867 Al 7/2010 Gilletal. 71118 5015/0149579 ALl* 572015 Hind ot al 709/213

2010/0312861 Al* 12/2010 Kolhietal. 709/219 Lo

2011/0047437 Al* 2/2011 Flynn ..o, 714/758 * cited by examiner

US 9,348,712 B1

Sheet 1 of 8

May 24, 2016

U.S. Patent

021 Aeury abeioig

Yl Old
9002 9PON
4108
ISoU-N
4058 | | q0L8
ajhpow-Qg 9|npouwr-N /
\ /

008
auibug Buiyosen

00z
ajosuo juawabeuep

voegl
abelolg

051
oluqed
Buiyoums
19)sn|H

oovM

/ \
V0S8 volL8 \
a|npow-g anpow-N
vios8
1SoY-Iy
V00Z 3peN

vl
NiompaN

08l
i

US 9,348,712 B1

Sheet 2 of 8

May 24, 2016

U.S. Patent

O

J10A Y I0A J1I0A gIoA
payoe) payoes payoes | | payseg
0S} obelo)s
3002 900, v00L
J9poN g 9poN V/ 9poN
[
HIOMION
00€

omrM\

auibug Buiyoen

a|osuo) juswabeuely

002

US 9,348,712 B1

Sheet 3 of 8

May 24, 2016

U.S. Patent

00
S9poN
wo.u4/o]
(344 (144
alosuo) 4as J13)depy ylomioN
ka4 M\
— k444
00¢ Jlossadoud
auibug Buiyoe)
92z
waysAg Buesadp
(244
Aowapy

00¢ %

US 9,348,712 B1

Sheet 4 of 8

May 24, 2016

U.S. Patent

(1124
3s17 Buiyoe) apo

3%
£Laljod Buiyosesn

[iT4%
JSI7 JUaAg

(1%
Is11 SINqURY

€ Old

[[X3
auibug Bunsanbay

(143
aulBug Buioyuop

01€
auibug Aoljog

00¢
auibug Buiyoe)

US 9,348,712 Bl

Sheet 5 of 8

May 24, 2016

U.S. Patent

ooy w

v Old

d 9poN
»3 @PON
O @poN
V¥ 9poN

772
1517 Buyoeg epoN

NO=moiB ojny
sse29e)saly = Aoljod |14
GiNGZ = 9218
ocr
Aoljad Buiyosen

«PeoPIoM LINIT_ HOVIY
£30rdS 994 LIN HOVIY

Bujyoeo |oA spou e IONVHO

odAy ejebaibbe 3DNVHO
(7772
1817 ueng

%SL > peopjiom

ON = Jwi| aoeds o34y
0G < SysIp #

plIgAH = adA] “sjebaibbe

oiv
1817 BINqUNY

US 9,348,712 B1

Sheet 6 of 8

May 24, 2016

U.S. Patent

00s

G Old

[V
‘s)sanbal
alj) Uo Paseq Ja)sn|a ay) Ul sapou
109|198 Uo Buyoes awnjoa Jusws|dw|

ﬁ

095
"J9}sN|D BY} Ul SBPOU Jo8[es
1e suonjelado awnjoa Buiynes Buiwiopuad
10} Sapou ay) 0} s}sanbal piemiod

ﬁ

0SS
‘1811 Buyoen spou sy uo
paseq sisanbal BulyoeD BWN[OA BlBIBUDD

q

o¥s
'$9pOU JO 198 pauIISlep
8y} uo paseq sl Buyoden apou e sjepdn

A

0es
181| SINQURE pauo}s Buish sewnjoA ayoeD
0} YoIUM UD SBPOU JO 188 B suiLIsla(]

A

[4°]
‘AIowiaw Ul 3sl| SINGUHE 210}

Buipnjour ‘uonewlojul Ao1jod aalaoay

US 9,348,712 B1

Sheet 7 of 8

May 24, 2016

U.S. Patent

009

9 'Ol

09
‘g1s6nbal
aUy) Uo paskq Jaisn|o 8y} Ul S8pou
109198 UO BuIyoeD BWN|OA Juswaldu|

ﬂ

099
* J18}SN[O BY} Ul S8pOU J08|8S
e suonelado swnjoa Buiyoeo Buiwioped
10} SBPOU BU} 0} S}senbal piemio

ﬂ

059
181] JusAS B Woly uonelsdo
BuIyoBO SWINJOA B pUR JBNUSpl Spou
sy} apnjour o} 1s1] Buiyoes spou e syepdn

A

o9
'9pOoU B Je)S|| JUsAs
BU} LD JUSAS UE JO 80UBLIND00 SUILLISaQ

ﬂ

0€9
I81| JUSAD
palo}s UO paseq Jasn(o Ul SJUBAS J0}IUOK

#

0Z9
"AIOWSW Ul }S1| JUSAS 81015

ﬂ

019
181| JUaAa
Buipnoul ‘uoiyewiojul Ao1jod sAsLeY

US 9,348,712 B1

Sheet 8 of 8

May 24, 2016

U.S. Patent

aWN|OA

1| suwnjop
| wiBuo
1

0¢1 obeioyg

Izl
19)depy abei0)g

/. 9Old

081 a9
051 pue
auqeq Buiysms 09} @josuo? Juawabeuep
woi4/o| woli4/0]
9Z. —
sordepy Ls%v@m_wo\suaz
$5999Y JAJSN|H

(XA3

05,
woshs

Bupesad obeioyg

vl
Kowsapy

[
10ss2301d

004 M

US 9,348,712 B1

1
POLICY-BASED VOLUME CACHING IN A
CLUSTERED STORAGE SYSTEM

FIELD OF THE INVENTION

The present invention relates to data storage systems, and
particularly, to a technique for implementing a policy-based
data caching engine in a clustered storage system (cluster) for
automatically generating cached storage objects on select
nodes of the cluster.

BACKGROUND OF THE INVENTION

A data storage system typically includes one or more stor-
age devices into which information may be entered, and from
which information may be obtained. The storage system may
include a storage operating system that functionally orga-
nizes the storage system by invoking storage operations in
support of a storage service implemented by the storage sys-
tem. The storage system may be implemented with a variety
of storage architectures including, but not limited to, a net-
work-attached storage (NAS) environment, a storage area
network (SAN), a direct-attached storage environment, and
any combination thereof. The storage devices are typically
disk drives organized as a storage array, although other stor-
age devices (e.g., flash memory) may also constitute the array.

The storage operating system may implement a high-level
abstraction layer to logically organize information as a hier-
archical structure of storage objects, such as file systems,
volumes, directories, and files. For example, each “on-disk”
file may be implemented as set of data structures, e.g., blocks,
configured to store information, such as the actual data for the
file. These blocks may be organized within a volume imple-
menting a volume block number (vbn) space that is main-
tained by the file system, whereby each volume may be,
although is not necessarily, associated with its own file sys-
tem. In certain cases, one or more volumes may additionally
be organized to form a higher-level storage object, such as an
aggregate, of the storage system.

The storage system may further be configured to operate
according to a client/server model of information delivery to
allow many clients access to information stored on the storage
system. In this model, a client may constitute an application,
such as a database application, executing on a computer that
“connects” to the storage system over a computer network,
such as a point-to-point link, shared local area network
(LAN), wide area network (WAN), or virtual private network
(VPN) implemented over a public network such as the Inter-
net. Each client may request the services of the storage system
by issuing access requests (a read or write request) as an
object-based (e.g., file- or block-based) protocol message to
the storage system over the network.

Multiple storage systems may be interconnected to provide
a clustered storage system (cluster) configured to service
access requests using the combined resources of the cluster,
where each storage system may be a “node” of the cluster. In
some cases, the cluster may implement aggregates that may
be distributed across the nodes of the cluster. Such aggregates
may thus be configured to include one or more volumes,
which may be served by the cluster in response to client
requests for information organized within an aggregate.

Each node may constitute functional components that
cooperate to provide a distributed architecture for the cluster.
Such components may include a network element (N-blade or
N-module), a storage element (D-blade or D-module), and a
management element (M-host). The N-module may enable
the node to connect to clients over the network, while the

10

15

20

25

30

35

40

45

55

60

65

2

D-module may enable the node to connect to storage devices
for storing data to and retrieving data from storage objects. In
contrast, the M-host may generate information sharing opera-
tions to present a distributed file system image for the cluster.

Generally, the cluster may provide access to the totality of
storage provided by the nodes (“cluster storage™) when cli-
ents connect to a node and submit an access request targeted
at a storage object on the cluster storage. An N-module may
be configured to receive the request and forward the request to
atarget D-module in the cluster which manages the requested
storage object. The D-module may be targeted, for example,
via the M-host functionality which manages a mapping
between storage objects and D-modules in the cluster man-
aging such respective storage objects. In the case of a read
request, the target D-module may forward retrieved data to
the N-module, which may in turn forward the retrieved data to
the client in response to the read request.

One technique for improved servicing of requests by a
node involves accelerating access to remote data (e.g., a vol-
ume) by caching the volume at the node receiving the request.
A cached volume may accelerate access by avoiding the need
for the node to retrieve such data from a remote node. In one
example, the node may periodically request a pre-defined
amount of data from the remote node prior to a client request
for such data. In other examples, known techniques may be
implemented to determine the amount and type of data to
cache based on an access request history for the volume. By
implementing volume caching techniques in a cluster, pro-
cessing overhead at the nodes may be reduced while also
conserving cluster bandwidth.

Challenges may arise, however, when seeking to optimize
overall cluster performance using known volume caching
techniques. For instance, known techniques may implement
cached volumes at all nodes in the cluster to provide accel-
eration atall client access points of the cluster. However, these
techniques fail to account for node-specific features (e.g.,
workload limits, storage space limits) to allow for the conser-
vation of processing resources at select nodes.

To account for node-specific features, a user (administra-
tor) of the cluster must possess detailed knowledge of the
cluster layout (topology), including the specific features for
each node. Based on this knowledge, the user may determine
the nodes on which to implement volume caching and manu-
ally implement cached volumes on such determined nodes.
As storage demands grow and the number of nodes in the
cluster increases to meet those demands, there is a need for an
improved method for caching volumes to optimize cluster
performance.

SUMMARY OF THE INVENTION

Described herein is a novel technique for implementing a
policy-based caching engine in a storage system cluster (clus-
ter) to automatically implement volume caching at select
nodes of the cluster. The novel caching engine may be imple-
mented in a management console of the cluster storing policy
information related to volume caching operations requested
by the caching engine. Policy information may include node
or cluster attributes, operational events, and a pre-defined
cached volume configuration of import to the user. Based on
the stored policy information, the caching engine may deter-
mine a set of nodes on which to initiate a volume caching
operation and generate a request for such operation to be
performed on a particular node. Only select nodes in the
cluster may thus implement volume caching to thereby con-
serve processing resources for more critical operations at
other select nodes in the cluster.

US 9,348,712 B1

3

To optimize cluster performance, volume caching opera-
tions requested by the caching engine may involve generating
or deleting a cached volume at a node. A cached volume may
be generated at the node when attributes of the node are in
conformance with node attributes in the stored policy infor-
mation as an example. In another example, a cached volume
may be generated or deleted upon the occurrence of an opera-
tional event at or related to the node in accordance with the
stored policy information. When generating a cached volume,
the pre-defined configuration stored in the policy information
may further be included in the request for implementation at
the node. The caching engine may thus automatically deter-
mine a conformance between a node and the policy informa-
tion to initiate a particular volume caching operation.

The novel technique advantageously overcome deficien-
cies with the prior art since a volume caching operation may
automatically be performed at select nodes in the cluster
based on policy information stored at a management console.
The user need not possess detailed knowledge of the cluster
topology, nor node-specific features, to selectively imple-
ment volume caching on the nodes. Instead, a user may sim-
ply supply policy information to the caching engine for
implementation across the cluster. As nodes in the cluster
change over time to meet changing storage needs, the novel
technique of policy-based volume caching may provide a
more adaptive solution for optimizing cluster performance in
an automated manner.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS.1A-B are schematic block diagrams of an exemplary
storage system cluster environment (cluster) implementing
volume caching according to one embodiment;

FIG. 2 is a schematic block diagram of an exemplary man-
agement console of a cluster implementing a novel caching
engine according to one embodiment;

FIG. 3 shows a schematic block diagram of the caching
engine accelerating access to remote data in accordance with
one embodiment of the present invention;

FIG. 4 shows a diagram illustrating novel data structures
implemented by the caching engine of FIG. 3 for storing
policy information accessed by the caching engine according
to one embodiment;

FIG. 5 shows a flow diagram of a process for implementing
volume caching on select nodes in the cluster according to
one embodiment;

FIG. 6 shows a flow diagram of a process for requesting a
volume caching operation at a node based on the occurrence
of an operational event at the node; and

FIG. 7 is a schematic block diagram of an exemplary select
node in the cluster that may automatically implement volume
caching as requested by the caching engine.

DETAILED DESCRIPTION

In the following description, numerous details are set forth
for purpose of explanation. However, one of ordinary skill in
the art will realize that the embodiments described herein
may be practiced without the use of these specific details. In
other instances, well-known structures and devices are shown
in block diagram form in order not to obscure the description
with unnecessary detail.

1. Cluster Environment

FIGS.1A-B are schematic block diagrams of an exemplary
cluster environment 100 in which some embodiments oper-
ate. Cluster 100 may comprise two or more interconnected
nodes 700 (node 700A, 700B) configured to provide access to

10

15

20

25

30

35

40

45

50

55

60

65

4

data stored on a set of storage devices constituting storage 130
of cluster 100. Storage services may be provided by nodes
700 implementing various functional components that coop-
erate to provide a distributed storage system architecture of
cluster 100.

Tustratively, each node 700 may be organized as one or
more network (N-module 810) or storage elements (D-mod-
ule 850), and a management element (M-host 801). N-mod-
ule 810 may include functionality to enable node 700 to
connect to one or more clients 180 over a computer network
140, while each D-module 850 may connect to storage 130
implementing a storage array 120. M-host 801 may provide
cluster communication services between nodes 700 for gen-
erating information sharing operations and for presenting a
distributed file system image for cluster 100. Nodes 700 may
further be interconnected by a cluster switching fabric 150
described further below.

It should also be noted that while there is shown an equal
number of N and D-modules constituting nodes 700, there
may be a different number and/or type of functional compo-
nents embodying node 700 in accordance with various
embodiments of the present invention. For example, there
may be multiple N-modules and/or D-modules intercon-
nected in cluster 100 that do not reflect a one-to-one corre-
spondence between the modules of nodes 700. Accordingly,
the description of node 700 comprising one N- and one
D-module should be taken as illustrative only and it will be
understood that the novel technique is not limited to the
illustrative embodiment discussed herein.

Client 180 may be a general-purpose computer configured
to interact with node 700 in accordance with a client/server
model of information delivery. To that end, client 180 may
request the services of node 700 by submitting a read or write
request to node 700. In response to the request, node 700 may
return the results of the requested services by exchanging
information packets over network 140 with client 180. Client
180 may submit access requests by issuing packets using
object-based access protocols, such as the Common Internet
File System (CIFS) protocol, Network File System (NFS)
protocol, Small Computer Systems Interface (SCSI) protocol
encapsulated over TCP (iSCSI), and SCSI encapsulated over
Fibre Channel (FCP) for instance. Preferably, node 700 may
implement a combination of file-based and block-based pro-
tocols to communicate with client 180.

Cluster 100 may further include a management console
200 for providing management services for the overall clus-
ter. Management console 200 may, for instance, communi-
cate with node 700 across network 140 to request operations
to be performed at node 700, and to request information (e.g.,
node configurations, operating metrics) from or provide
information to node 700. In addition, management console
200 may be configured to receive inputs from and provide
outputs to a user of cluster 100 (e.g., storage administrator)
thereby operating as a centralized management interface
between the administrator and cluster 100. In the illustrative
embodiment, management console 200 may be networked to
nodes 700 and client 180 although other embodiments of the
present invention may implement management console 200
as a functional component of node 700, client 180, or any
other processing system connected to or constituting cluster
100.

In a distributed architecture, client 180 may submit an
access request to a node for data stored at a remote node. As
an example, an access request from client 180 may be sent to
node 700A which may target a storage object (e.g., volume)
on node 700B in storage 130B. To accelerate servicing of the
access request and optimize cluster performance, node 700A

US 9,348,712 B1

5

may cache the requested volume in local memory or in stor-
age 130A. For instance, during initialization of node 700A,
node 700A may request all or a portion of the volume from
node 700B for storage at node 700A prior to an actual request
by client 180 for such data.

It will be appreciated that known techniques for requesting
remote data in advance of a client request may be imple-
mented when performing volume caching. Such techniques
are well-known in the art and not germane to the present
invention; however, a brief description is provided herein for
completeness. For instance, cached volumes may be imple-
mented based on a frequency of requests for a subject volume.
Inone example, management console 200 may request access
(e.g., frequency) information from a subject node to deter-
mine the subject volume to be the most frequently accessed
on the subject node. A request may then be forwarded by
management console 200 to the other nodes in the cluster to
cache the subject volume. Nodes may respond to a caching
request by requesting the subject volume from the subject
node to generate the cached volume. Updates to a cached
volume may then be carried by the nodes periodically
exchanging a series of messages with the subject node to
synchronize data in the cached volume and data in the subject
volume.

In conventional implementations, data may be cached at all
nodes 700 in cluster 100 to accelerate servicing of access
requests at any of nodes 700. However, such techniques may
fail to adapt to node-specific features which may instead
require a conservation of processing resources for more criti-
cal storage operations in lieu of caching operations. To avoid
processing overhead associated with volume caching at select
nodes, the administrator must possess detailed knowledge of
the cluster topology to determine on which nodes to imple-
ment caching. As the number of nodes in the cluster grows
and the complexity of the cluster increases, the conventional
techniques are an unwieldy and impractical approach to man-
aging the cluster.

To overcome such limitations, a novel caching engine 300
may be implemented in cluster 100 to implement cached
volumes on select nodes 700 in the cluster. Illustratively,
caching engine 300 may be implemented in management
console 200 although it will be appreciated that caching
engine 300 may be implemented in other processing systems
connected with or constituting cluster 100 in accordance with
teachings of the present invention. For instance, aspects of
caching engine 300 may be implemented in M-host 801 for
carrying out the distributed operations of caching engine 300
across cluster 100 to result in cached volumes on select nodes
700 in the cluster. In the illustrative embodiment, policy infor-
mation associated with volume caching operations may be
supplied by the administrator and stored in memory of man-
agement console 200. Exemplary policy information may
include attributes of the nodes, operational events in cluster
100, and a preferred (pre-defined) configuration for a cached
volume for instance.

Caching engine 300 may be operative to access the stored
policy information to determine a set of nodes on which to
implement volume caching. The determination may be per-
formed by caching engine 300 determining a conformance
between attributes of the set of nodes and the policy informa-
tion, or the occurrence of an operational event indicated in the
policy information at the set of nodes. Upon determining a
need for a volume caching operation, caching engine 300 may
generate requests for such caching operation and forward
such requests to respective nodes 700 in cluster 100 for per-
formance by such nodes. In this way, volume caching may be
implemented in select nodes in an automated manner without

20

30

40

45

50

55

6

requiring the administrator to possess detailed knowledge of
cluster topology or node-specific features.

FIG. 1B is a schematic block diagram of an alternative
cluster environment 150 in which volume caching may be
implemented according to one embodiment of the present
invention. Environment 150 may include multiple nodes 700
(node A, node B, node C) configured to provide access to
volumes stored on storage 130. Each storage 130 may include
one or more volumes, constituting volumes managed by a
respective node (referred to as “origin volume™) and volumes
cached from other nodes. For instance, vol A may constitute
an origin volume for node A, whereas cached vol B and
cached vol C may constitute data cached from node B and
node C, respectively.

Iustratively, node A and node B may implement volume
caching and thus accelerate access to data stored at other
nodes in cluster 150. That is, client requests received by node
A and node B may be serviced using either an origin volume
or cached volume at such nodes to avoid the need to request
such data from the other nodes. In this way, bandwidth of
cluster 150 may be conserved for servicing other data
requests or for performing more critical cluster operations
such as data backup or recovery between nodes.

In certain instances, however, it may be desirable to con-
serve processing resources at select nodes to perform more
critical operations at such nodes. As an example, storage
space at node C may approach a storage limit and thus it
would be desirable to conserve storage resources at node C
for storing new data on origin vol C rather than caching data
from the other nodes. To that end, caching engine 300 may
automatically implement volume caching at only nodes A and
B and not at node C to optimize overall cluster performance
without implementing volume caching at all nodes in cluster
150.

In one embodiment, caching engine 300 may implement
volume caching at select nodes by accessing policy informa-
tion stored in management console 200. For instance, stored
policy information may include a node attribute associated
with a related volume caching operation. In the present
example, the attribute may involve a pre-defined amount of
available storage space at a node (e.g., 60%). Caching engine
300 may then determine that only node A and B conform to
the pre-defined amount of available storage space, thereby
resulting in a request to generate a cached volume on node A
and B only. Advantageously, since node C may fail to con-
form to the requisite amount of available storage space as
indicated by the policy information, volume caching may be
avoided on node C.

FIG. 2 is an exemplary schematic block diagram of man-
agement console 200 that may be implemented in the cluster
environment of FIGS. 1A-B. Management console 200 may
be implemented by a general- or special-purpose computer
comprising a processor 222, a memory 224, a network
adapter 225, and a user console 223 interconnected by a
system bus 223.

Memory 224 illustratively comprises storage locations that
are addressable by processor 222 and network adapter 225 for
storing program instructions and data used in some embodi-
ments. Processor 222 and adapter 225 may, in turn, comprise
processing elements and/or logic circuitry configured to
execute the instructions and manipulate the data stored in
memory 224. In some embodiments, memory 224 may com-
prise a form of random access memory (RAM) comprising
“volatile” memory that is generally cleared by a power cycle
or other reboot operation.

Communication between the nodes and management con-
sole 200 may be carried out via network adapter 225, which

US 9,348,712 B1

7

comprises a plurality of ports adapted to couple management
console 200 and the nodes over point-to-point links, wide
area networks, virtual private networks implemented over a
public network (Internet) or a shared local area network.
Network adapter 225 thus may comprise the mechanical,
electrical and signaling circuitry needed to connect the node
to the network. [llustratively, network 140 of FIG. 1A-B may
be embodied as an Ethernet network or a Fibre Channel (FC)
network. Management console 200 may communicate with
the nodes over network 140 by exchanging discrete frames or
packets of data according to pre-defined protocols, such as
TCP/IP.

Tlustratively, management console 200 may embody a
centralized management interface between nodes in the clus-
ter (e.g., nodes 700) and the administrator of the cluster by
executing an operating system 226 resident in memory 224.
Operating system 226 may functionally organize manage-
ment console 200 to provide cluster management services by
e.g.,communicating with an M-host of the nodes to request or
supply cluster information, as well as communicating with N-
and D-modules of the nodes to request the performance of
cluster operations. [t will be apparent to those skilled in the art
that other processing and memory means, including various
computer readable media, may be used for storing and
executing program instructions pertaining to the invention
described herein. In some embodiments, operating system
300 may comprises a plurality of software layers (including
caching engine 300) that are executed by processor 222.

In the illustrative embodiment, caching engine 300 may be
implemented in management console 200 as program instruc-
tions stored in memory 224 and executed by processor 222 to
implement volume caching at select nodes in the cluster. To
that end, caching engine 300 may be functionally organized
to store policy information to memory 224, determine a set of
nodes on which to cache volumes based on the stored policy
information, and request a volume caching operation to be
performed on a node of the cluster. Advantageously, volume
caching may be performed across select nodes in the cluster
without an administrator implementing volume caching
based on the administrator’s knowledge of the cluster topol-
ogy and node-specific features.

User console 223 may embody a monitor, keyboard, or
other user interfaces, in certain embodiments, to allow the
administrator to interface with management console 200. In
the present invention, the administrator may interface at user
console 223 to input policy information for storage in
memory 224. Examples of policy information may include
node attributes, operational events, and a pre-defined con-
figuration for a cached volume. Details of the policy infor-
mation are described further with respect to FIG. 4.

II. Novel Caching Engine

FIG. 3 shows a block diagram of caching engine 300 con-
figured to implement policy-based volume caching in a clus-
ter (e.g., cluster 100) according to one embodiment. Prefer-
ably, caching engine 300 may be implemented by one or more
software-executing processors of a management console
(management console 200) in the cluster. However, caching
engine 300 may be implemented by a combination of soft-
ware-executing processors, hardware and firmware in other
embodiments, and may further be implemented in various
components of the cluster to distribute processing tasks
amongst the cluster. In addition, caching engine 300 may not
be limited to the illustrative embodiment described herein,
and may include a different number and/or different types of
components to carry out the operations of caching engine 300
consistent with teachings of the present technique.

20

25

40

45

8

As shown in FIG. 3, functional components of caching
engine 300 may include a policy engine 310, a monitoring
engine 320, and a requesting engine 330 in accordance with
one embodiment. Policy engine 310 may be operative to
manage data structures which store information associated
with volume caching operations (policy information) per-
formed by caching engine 300. Illustratively, policy engine
310 may implement one or more data structures such as
attribute list 410, event list 420, caching policy 430, and a
node caching list 440 for storing policy information.

Attribute list 410, event list 420, and caching policy 430
may be generated using information input by an administrator
interfacing at the management console. Once received, policy
engine 310 may store the inputs to respective data structures.
To thatend, attribute list 410 may store a set of node attributes
of' import to the administrator in accelerating performance of
the cluster. Event list 420 may store identifiers for operational
events in the cluster to indicate the need for a volume caching
operation upon the occurrence of the operational event. Cach-
ing policy 430 may include a pre-defined configuration for a
cached volume with which to generate a cached volume on a
node. Node caching list 440 may, in contrast, store a set of
identifiers for nodes on which to perform a volume caching
operation based on information stored in attribute list 410 and
event list 420. Details of the exemplary data structures are
described in more detail below with regard to FIG. 4.

Monitoring engine 320 may be operative to determine a
need for a volume caching operation on a node of the cluster.
A volume caching operation may constitute the generation of
a new cached volume or the deletion of an existing cached
volume for example. In one embodiment, during initializa-
tion of the cluster or a node in the cluster, monitoring engine
320 may determine whether to generate a cached volume on
anode in the cluster by accessing the attributes in attribute list
410. Monitoring engine 320 may further request such
attributes for a node in the cluster from e.g., the operating
system of the management console. A comparison operation
may then be performed by monitoring engine 320 to deter-
mine whether the attributes in attribute list 410 correspond to
(e.g., match) attributes of the nodes as supplied by the oper-
ating system. When a match exists, monitoring engine 420
may store an identifier for such node, such as a node name, to
node caching list 440 for requesting a volume caching opera-
tion at the node at a later point in time.

In some embodiments, an operational event such as a
change in a configuration of the cluster or a node may also
result in a volume caching operation in the cluster. Monitor-
ing engine 320 may thus determine whether an event has
occurred to determine a need for a volume caching operation.
In one embodiment, monitoring engine 320 may periodically
request a node or cluster configuration from the operating
system based on e.g., a preferred configuration in event list
420, and store the configuration in memory. A configuration
requested at a later point in time may then be compared with
a previous configuration to determine a difference between
configurations, thereby resulting in an occurrence of an
operational event. Upon determining the occurrence of an
event, node caching list 440 may be updated by monitoring
engine 320 to indicate a volume caching operation to be
performed on the node.

In some embodiments, an operational event may involve
the realization of a threshold (e.g., storage limit, storage space
limit) or the existence of a cluster configuration (e.g., caching
on all nodes), each referred to herein as a “system condition”.
Monitoring engine 320 may thus request an attribute from the
storage operating system of one or more nodes or of the
cluster based on event list 420, and use such information to

US 9,348,712 B1

9

determine whether a system condition exists to constitute an
occurrence of an operational event. Upon the determination
of such event, monitoring engine 320 may update node cach-
ing list 440 with one or more node names to indicate the
occurrence of the event and the need to perform a volume
caching operation on the indicated node(s). Further, based on
a volume caching operation associated with the operational
event as indicated in event list 420, monitoring engine 320
may associate each of the node names with a related volume
caching operation according to event list 420.

Requesting engine 330 may be implemented in caching
engine 300 to initiate a volume caching operation at a node of
the cluster. To that end, requesting engine 340 may generate a
request for each node in node caching list 440 to initiate the
volume caching operation at the select set of nodes. In one
example, the volume caching operation may involve gener-
ating a new cached volume at a node, so requesting engine
330 may include the pre-defined configuration stored in cach-
ing policy 430 to produce a cached volume having the pre-
defined configuration at the node. In another example, the
volume caching operation may involve the deletion of one or
more cached volumes at the node, so requesting engine 430
may simply request the deletion of such cached volume(s) on
the node in its request. Each request may then be forwarded
by requesting engine 330 to the appropriate node to carry out
the requested operation.

FIG. 4 illustrates exemplary policy information stored in
data structures 410, 420, 430, 440 in further detail. Node
attributes stored in attribute list 410 may include a set of
attributes of import to the administrator for determining, by
caching engine 300, on which select nodes to generate a
cached volume. As an example, a node attribute may include
atype of storage object supported by the node (e.g, hybrid vs.
regular aggregate), a pre-defined number of storage devices
constituting the node’s storage subsystem, an amount of
available storage space on the node, or a workload of the
node. Each node attribute may be input by the administrator
interfacing at the management console and stored by policy
engine 310 to attribute list 410 for enabling monitoring
engine 320 to determine the set of nodes on which to generate
a cached volume.

Events stored in event list 420 may similarly be input by the
administrator interfacing at the management console. Exem-
plary events may include a change in a particular node con-
figuration (e.g., support for hybrid aggregate), a realization of
a threshold (e.g., maximum workload, available space limit),
or an existence of a system condition within the cluster (e.g.,
cached volumes on all nodes) or a node of the cluster. The
administrator may also supply a related volume caching
operation (e.g., generate cached volume, delete cached vol-
ume) with each event to indicate a pre-defined volume cach-
ing operation to be performed upon the occurrence of such
event. Each event may thus be associated with a volume
caching operation in event list 420 to indicate a type of request
to be generated by requesting engine 330. Preferably, event
list 420 may be generated by policy engine 310 upon initial-
ization of caching engine 300, and may be accessed by moni-
toring engine 320 to determine a need for a volume caching
operation.

A preferred configuration for a cached volume may be
stored as a pre-defined configuration for a cached volume in
caching policy 430. Advantageously, the pre-defined configu-
ration may be stored at the management console so that the
administrator need only interface at a centralized manage-
ment interface to implement such configuration across select
nodes in the cluster. To that end, caching policy 430 may
indicate an initial storage size of a cached volume (e.g., 20

10

15

20

25

30

35

40

45

50

55

60

65

10

MB), adata fetching or “fill” policy (e.g., when first requested
by aclientor “firstaccess™), apolicy to increase the size of the
cached volume upon reaching a storage limit, or other con-
figuration elements for a cached volume. The pre-defined
configuration stored in caching policy 430 may then be
accessed by requesting engine 330 when requesting the gen-
eration of a cached volume at a node.

Node caching list 440 may include a set of node names on
which to generate or delete cached volumes. Node names
may be stored to node caching list 440 by monitoring engine
320 when a configuration of a node is in conformance with
information of attribute list 410, or when an operational event
is determined to have occurred in accordance with event list
420. In certain embodiments, node caching list 440 may
include a delete indicator to indicate the need to delete cached
volumes at a particular node. For instance, an event such as
the realization of a workload limit of a node (e.g.,
REACH_LIMIT workload) may be associated with a delete
cached volume operation to indicate a need to eliminate pro-
cessing overhead associated with the cached volume at the
node.

In the illustrative embodiment, components of caching
engine 300 may determine a need for a volume caching opera-
tion at select nodes A, C, E, and F in one exemplary cluster as
indicated by the respective node names in node caching list
440. It will be noted that caching engine 300 may have deter-
mined e.g., a non-conformance between attributes of other
nodes B, D (not shown) and the policy information to thereby
result in the absence of such node names in node caching list
440. Further, monitoring engine 320 may determine the real-
ization of a workload limit at node E based on event list 420,
resulting in a need to delete cached volumes at node E.
Accordingly, node E may be associated with an identifier (*)
in node caching list 40 for enabling requesting engine 330 to
request the deletion of cached volumes at node E.

Since information related to volume caching operations
may be stored in the exemplary data structures, the adminis-
trator need not rely on the administrator’s own knowledge of
the cluster topology and specific features for each node to
implement volume caching across select nodes in the cluster.
Instead, policy information may be input by the administrator
at a central management interface to implement the desired
policy across select nodes in the cluster automatically. In
addition, changes in node configuration or system conditions
within the cluster may automatically result in a volume cach-
ing operating to optimize cluster performance using the
exemplary novel technique.

II1. Technique for Policy-Based Volume Caching

FIG. 5 shows a block diagram of a process 500 for opti-
mizing performance of the cluster by generating cached vol-
umes on select nodes of the cluster using the novel technique.
Preferably, process 500 may be performed by components of
a caching engine (e.g., caching engine 300) selectively imple-
menting volume caching on nodes in the cluster in a policy-
based manner (e.g., using policy information stored at a man-
agement console). It will be noted that the steps of process
500 may be performed in the same or a different sequence as
illustratively described and further may be performed in com-
bination with one or more other steps of process 500 in certain
embodiments. In addition, process 500 may include more or
less steps than described in the illustrative embodiment, and
thus it will be appreciated that process 500 may be limited to
the illustrative embodiment.

At step 510, policy information associated with volume
caching operations in the cluster may be received by the
caching engine. In one embodiment, policy information may
be input by a user interfacing at a management console imple-

US 9,348,712 B1

11

menting the caching engine (e.g., management console 200),
and may include information such as node attributes and a
cached volume configuration for example. In other embodi-
ments, such information may be supplied automatically to the
caching engine by another device (e.g., client 180) connected
to the management console.

Once received, a policy engine (e.g., policy engine 310) of
the caching engine may store the policy information in data
structures generated by the caching engine (step 520). For
instance, the policy engine may store node attributes in an
attribute list (e.g., attribute list 410), operational events in an
event list (e.g., event list 420), and a cached volume configu-
ration in a caching policy (e.g., caching policy 430). It will be
appreciated that the policy engine may implement different
data structures other than the exemplary data structures so the
novel technique is not limited to the number and type of data
structures described herein.

A monitoring engine (e.g., monitoring engine 320) of the
caching engine may be operative at step 530 to determine a set
of nodes on which to cache volumes. In one embodiment, the
monitoring engine may retrieve a set of node attributes from
the attribute list constituting the stored policy information.
The monitoring engine may further request attributes of
nodes in the cluster from the operating system of the man-
agement console for comparing the nodes’ attributes with the
stored attribute list. A need for a volume caching operation
may then be determined by the monitoring engine comparing
the attributes received from the operating system and
attributes in the stored attribute list.

Matches between node attributes received from the oper-
ating system and the attributes in the attribute list may result
in a need to perform a volume caching operation on the set of
nodes for which a match is determined. The monitoring
engine may thus update a node caching list (e.g., node cach-
ing list 540) by storing a node name for each node in the set to
indicate a need for a volume caching operation at such nodes
(step 540). The node caching list may be generated by the
policy engine during initialization of the caching engine, for
example, which may thereafter be accessed by a requesting
engine (e.g., requesting engine 330) of the caching engine to
request the performance of such operations at the nodes.

To that end, the requesting engine may access the node
caching list to generate requests for volume caching opera-
tions at the nodes (step 550). When generating a request for a
cached volume at a node, the requesting engine may access
the caching policy to retrieve a pre-defined configuration and
include the pre-defined configuration in the request to gener-
ate the cached volume. Requests for a volume caching opera-
tion at select nodes in the cluster may then be forwarded by
the requesting engine to respective nodes (step 560).

Upon receipt of such request, select nodes in the cluster
may perform a volume caching operation based on the stored
policy information (step 570). In one example, upon receipt
of'arequest to generate a cached volume, a node may generate
the cached volume using the caching policy provided in the
request from the requesting engine. For instance, if the cach-
ing policy includes a particular size and fill policy, then the
node may generate a cached volume implementing the par-
ticular size and fill policy. Thereafter, requests received by the
node and targeted for remote volumes may be serviced using
the cached volume.

In other examples, a node may receive a request to delete
cached volumes at the node to thereby conserve resources at
the node. As a result, the node may determine the cached
volumes at the node and delete such volumes (e.g., free up
storage space and stop processing tasks associated with the
cached volume). In this way, volume caching may efficiently

25

40

45

55

12

be implemented on select nodes throughout the cluster based
on policy information managed by the caching engine.

In some embodiments, the caching engine may initiate a
volume caching operation based on an operational event of
the cluster. For instance, the operational event may involve
the realization of a workload limit, the availability of addi-
tional storage space at a node, the configuration of a new
network entry point at a node (e.g., when migrating to a node
a network access port from another node), or another opera-
tional event which alters the operational state of a node or the
cluster. Advantageously, the novel technique may be imple-
mented in the cluster to determine the changed state and
initiate a volume caching operation as a result of the changed
state. The volume caching operation may be initiated to accel-
erate performance of the cluster by implementing cached
volumes on additional nodes or reduce processing overhead
at select node by deleting cached volumes.

FIG. 6 shows a block diagram of a process 600 for initiating
avolume caching operation upon the occurrence of an opera-
tional event in the cluster. Process 600 may be performed by
components of the caching engine (e.g., caching engine 300),
and may be performed in the same or a different sequence as
shown herein. In addition, process 600 may include more or
less steps than described in the illustrative embodiment, and
thus it will be appreciated that process 600 may be limited to
the illustrative embodiment.

Atstep 610 of process 600, the caching engine may receive
operational event information of the cluster or a node in the
cluster. In one embodiment, such information may be input
by a user interfacing at the management console, and may
include operational events such as a particular node configu-
ration, a realization of a threshold, or an existence of an
operating condition within the cluster for example. In other
embodiments, such information may be supplied automati-
cally to the caching engine by another device (e.g., client 180)
connected to the management console. Once received, the
policy engine of the caching engine may store the policy
information in a data structure such as an event (e.g., event list
420) generated by the caching engine (step 620).

Thereafter, the monitoring engine may be operative to
monitor events in the cluster at step 630. In one embodiment,
the monitoring engine may monitor events by periodically
requesting information of the cluster or a node from the
operating system of the management console, the requested
information corresponding to events indicated in the event
list. Information requested by the monitoring engine may
include a configuration, an operating status, a performance
metric, or any other information indicated in the event list.
The received information may then be processed by monitor-
ing engine to determine whether an operational event has
occurred (step 640). In one example, the monitoring engine
may store configuration information in memory and compare
aprevious configuration with a current configuration to deter-
mine whether a change in configuration has occurred to result
in an operational event. In other examples, the monitoring
engine may determine a threshold has been realized or an
operating status exists to constitute an operational event.

Upon determining an operational event has occurred, the
monitoring engine may update the node caching list by stor-
ing the node name related to the operational event to the node
caching list (step 650). A volume caching operation associ-
ated with the subject event as indicated in the event list may
also be stored to the node caching list to indicate the particular
volume caching operation to be performed as a result of the
event. For instance, upon determination of a node realizing a
workload threshold, the node name may be associated with an
indicator to delete a cached volume in the node caching list. In

US 9,348,712 B1

13

another example, upon determination of a node realizing an
available storage threshold, the node name may be associated
with an indicator to generate a cached volume.

At step 660, the requesting engine of the caching engine
may generate requests for nodes in the list according to the
indicated volume caching operation associated therewith, and
forwarded to the respective nodes. Upon receipt of the
request, select nodes may then perform the requested opera-
tion (step 670). In one embodiment, a node may delete the
cached volumes on the node to reduce processing overhead at
the node. In another embodiment, a node may generate one or
more cached volumes to accelerate performance of'the cluster
when servicing access requests targeted for remote volumes.
Using process 600, the caching engine may thus perform
volume caching operations on select nodes in the cluster upon
the occurrence of operational events to dynamically optimize
cluster performance.

IV. Node Carrying Out Policy-Based Volume Caching

FIG. 7 is a schematic block diagram of an exemplary select
node 700 in the cluster that may carry out a volume caching
operation as requested by the caching engine in accordance
with one embodiment. Node 700 may illustratively be
embodied as a storage system comprising one or more pro-
cessors 722, a memory 724, a network adapter 725, a cluster
access adapter 726, and a storage adapter 727, interconnected
by a system bus 721.

Memory 724 illustratively comprises storage locations that
are addressable by processor 722 and adapters 725, 726, 727
for storing program instructions and data used in some
embodiments. The processors and adapters may, in turn, com-
prise processing elements and/or logic circuitry configured to
execute the instructions and manipulate the data stored in
memory 724. In some embodiments, memory 724 may com-
prise a form of random access memory (RAM) comprising
“volatile” memory that is generally cleared by a power cycle
or other reboot operation.

Network adapter 725 may comprise a plurality of ports
adapted to couple node 700 to one or more clients 180 over
point-to-point links, wide area networks, virtual private net-
works implemented over a public network (Internet) or a
shared local area network. Network adapter 725 thus may
comprise the mechanical, electrical and signaling circuitry
needed to connect node 700 to network 180. Illustratively,
network 140 may be embodied as an Ethernet network or a
Fibre Channel (FC) network. Each client 180 may commu-
nicate with node 700 over network 140 by exchanging dis-
crete frames or packets of data according to pre-defined pro-
tocols, such as TCP/IP.

Cluster access adapter 726 may comprise a plurality of
ports adapted to couple node 700 to other nodes of the cluster
through cluster switching fabric 150. In the illustrative
embodiment, Ethernet may be used as the clustering protocol
and interconnect media, although it will be apparent to those
skilled in the art that other types of protocols and intercon-
nects may be utilized within the cluster architecture described
herein. In embodiments where node 700 may implement an
N- or D-module (e.g., N-module 810, D-module 850) in
providing storage services, cluster access adapter 726 may be
utilized by such modules for communicating with N- and
D-modules of other nodes in the cluster. To that end, multiple
processors 722 may implement node 700, such that one pro-
cessor may execute the functions of the N-module, while
another processor executes the functions of the D-module.

Tlustratively, node 700 may embody a storage system
executing a storage operating system 750 that preferably
implements a high-level layer of abstraction (e.g., file system)
to logically organize the information as a hierarchical struc-

20

25

30

40

45

14

ture of storage objects, such as file system, volumes, directo-
ries, and files on storage 130. Each file, for instance, may be
implemented as a set of data structures, i.e., disk blocks,
configured to store information such as the actual data for the
file. Blocks may further be organized as a volume, where each
volume may be, although is not necessarily, associated with
its own file system.

To that end, storage adapter 728 may cooperate with stor-
age operating system 750 executing on node 700 to access
information requested by clients 180. The information may
be stored on any type of writable storage media such as video
tape, optical, DVD, disk, magnetic tape, bubble memory,
electronic random access memory, micro-electro mechanical
storage media, solid state storage (e.g., flash memory), and
any other similar media adapted to store information. As
illustratively described, information may be stored on disks
constituting storage 130 configured as storage array 120.
Storage adapter 728 may thus comprise a plurality of ports
having input/output (I/O) interface circuitry that couples to
disks over an 1/O interconnect arrangement, such as a con-
ventional high-performance, FC link topology.

Storage of information on storage array 120 may prefer-
ably be implemented as one or more volumes (e.g., origin
volumes, cached volumes) that comprise a collection of
physical disks cooperating to define an overall logical
arrangement of volume block number (vbn) space on respec-
tive volume(s). The disks within a volume/file system may
typically be organized as one or more groups embodying
Redundant Array of Independent Disks (RAID) arrays. RAID
implementations may enhance the reliability/integrity of data
storage through the redundant writing of logical data
“stripes” across a given number of physical disks in the RAID
group, and the appropriate storing of parity information asso-
ciated with the striped data.

Storage operating system 750, portions of which are typi-
cally resident in memory 724 and executed by processor 722,
may functionally organize node 700 by invoking storage
operations in support of the storage services implemented by
node 700. It will be apparent to those skilled in the art that
other processing and memory means, including various com-
puter readable media, may be used for storing and executing
program instructions pertaining to the invention described
herein. In some embodiments, storage operating system 750
may comprise a plurality of software layers (including a layer
for generating a cached volume) that are executed by proces-
sor 722.

To facilitate access to storage objects on storage 130, stor-
age operating system 750 may implement a file system that
cooperates with one or more virtualization modules to “vir-
tualize” the storage space provided by storage 130. The file
system may logically organize the information as a hierarchi-
cal structure of named volumes, directories and files on stor-
age 130. Each file may be implemented as set of disk blocks
configured to store information, such as data, whereas a direc-
tory may be implemented as a specially formatted file in
which names and links to other files and directories are stored.
In addition, the virtualization module(s) may allow the file
system to logically organize information as a hierarchical
structure of blocks on the disks that are exported as named
logical unit numbers (luns).

In the illustrative embodiment, storage operating system
750 may embody the Data ONTAP® software operating sys-
tem available from NetApp, Inc., Sunnyvale, Calif. that
implements a Write Anywhere File Layout (WAFL®) file
system. However, it is expressly contemplated that any stor-
age operating system may be implemented in accordance
with the principles described herein. Accordingly, where the

US 9,348,712 B1

15
term “WAFL” is employed, it should be taken broadly to refer
to any storage operating system that is otherwise adaptable to
the teachings of the present invention.

Storage operating system 750 may moreover comprise a
series of software layers organized to form an integrated
network protocol stack or, more generally, a multi-protocol
layer (e.g., N-module 810) for providing data paths to data
stored on node 700 using e.g., block and file access protocols.
The multi-protocol engine may also facilitate communication
across cluster switching fabric 150 between nodes in the
cluster. The multi-protocol engine may thus include a media
access layer embodying network drivers (e.g., gigabit Ether-
net drivers) that interfaces to network protocol layers, such as
an Internet Protocol (IP) layer and its supporting transport
mechanisms, a TCP layer, and a User Datagram Protocol
(UDP) layer for instance.

In one embodiment, a file system protocol layer may pro-
vide multi-protocol file access and, to that end, may include
support for one or more protocols such as Direct Access File
System (DAFS), NFS, CIFS, and Hypertext Transfer Proto-
col (HTTP) protocols. A virtual interface layer may provide
direct access transport (DAT) capabilities, such as RDMA, as
required by the DAFS protocol. An iSCSI driver layer may
provide block protocol access over the TCP/IP network pro-
tocol layers, while an FC driver layer may receive and trans-
mit block access requests and responses to and from node
700. The FC and iSCSI drivers may provide FC- and iSCSI-
specific access control to the blocks and, thus, manage
exports of luns to iISCSI and/or FCP when accessing blocks
on node 700.

Storage operating system 750 may further include a series
of software layers organized to form a storage server (e.g.,
D-module 850) to provide data paths for accessing informa-
tion on storage devices (e.g., disks) constituting storage 130.
To that end, the storage server may include a file system, a
RAID system, and a disk driver system. The RAID system
may manage the storage and retrieval of information to/from
storage 130 in accordance with I/O operations, while the disk
driver system may implement a disk access protocol such as,
e.g., the SCSI protocol. The file system may implement a
virtualization system implementing a SCSI target module
disposed between the FC and iSCSI drivers and the file sys-
tem to provide translations between the block (lun) space and
the file system space.

The file system may illustratively be a message-based sys-
tem that allocates storage space as array 120 on storage 130
and controls the layout of information on array 120. The file
system further provides volume management capabilities for
accessing information stored on storage 130. These volume
management capabilities may include the organization of
data as volumes on storage 130, the initial configuration of
such volumes (e.g., implementing a volume size requested by
caching engine), and other volume management capabilities
(e.g., increasing the size of a volume). Preferably, the file
system manages volumes by implementing the WAFL file
system having an on-disk format representation that is block-
based using, e.g., 4 kilobyte (kB) blocks and using index
nodes (“inodes”) to identity files and file attributes (such as
creation time, access permissions, size and block location)
organized within volumes in storage 130. Illustrative, a stor-
age object such as an inode file may be used to describe the
layout of the file system and may be retrieved from storage
130 using a file handle, i.e., an identifier that includes an inode
number.

All inodes of the write-anywhere file system may be orga-
nized into the inode file. A file system (fs) info block may
specify the layout of information in the file system and may

30

40

45

55

16

include an inode of a file that includes all other inodes of the
file system. Each volume may have an fsinfo block that may
be stored at a fixed or otherwise determinable location within,
e.g., a RAID group. The inode of the inode file may directly
reference (point to) data blocks of the inode file or may
reference indirect blocks of the inode file that, in turn, refer-
ence data blocks of the inode file. Within each data block of
the inode file are embedded inodes, each of which may ref-
erence indirect blocks that, in turn, reference data blocks of a
file.

Operationally, node 700 may receive an access request
from client 180 which may be forwarded as a packet over
network 140 and to node 700 where it is received at network
adapter 725. A network driver (of the multi-protocol engine)
may process the packet based on its respective protocol and
forward the processed packet to the file system. Here, the file
system may load (retrieve) the requested data from storage
130 if it is not resident “in core”, i.e., in memory 724. If the
information is not in memory, the file system may index into
the inode file using the inode number to access an appropriate
entry and retrieve a logical vbn. The file system may then pass
a message structure including the logical vbn to the RAID
system to be mapped to a disk identifier and disk block num-
ber (disk,dbn). A disk driver may then access the dbn from the
specified disk and may load the requested data block(s) in
memory 724 for processing by node 700. Upon completion of
the access request, storage operating system 750 may return a
reply to client 180 over network 140.

In some embodiments, node 700 may receive a request
from a caching engine (e.g., caching engine 300) to perform
a volume caching operation. The request may embody a
packet forwarded by the caching engine over network 140 and
to node 700 where it is received at network adapter 725. A
network driver (of the multi-protocol engine) may process the
packet based on a respective protocol and forward the pro-
cessed packet to storage operating system 750. When the
volume caching operation involves the generation ofa cached
volume, the storage operating system may request data for
volumes on the other nodes in the cluster and forward the data
to the file system for organization as a cached volume on
storage 130. When the volume caching operation involves the
deletion of cached volumes on node 700, storage operating
system 750 may forward the packet to the file system for e.g.,
updating the inode file to remove references to the cached
volumes to be deleted. Upon completion of the request, stor-
age operating system 750 may return a reply to the caching
engine over network 140. Thereafter, requests for remote data
received by node 700 may be serviced using the cached vol-
umes implemented thereon.

It should be noted that the software “path” through the
storage operating system layers described above may alter-
natively be implemented in hardware. That is, in an alternate
embodiment of the invention, a data path may be imple-
mented as logic circuitry embodied within a field program-
mable gate array (FPGA) or an application specific integrated
circuit (ASIC). This type of hardware implementation may
increase the performance of the storage service provided by
node 700 in response to a request issued by client 180 or the
caching engine. Moreover, in another alternate embodiment,
the processing elements of adapters 725, 726, 727 may be
configured to offload some or all of the packet processing and
storage access operations, respectively, from processor 222,
to increase the performance of the storage service provided by
node 700. It is thus expressly contemplated that the various
processes, architectures and procedures described herein can
be implemented in hardware, firmware or software-executing
processors.

US 9,348,712 B1

17

As used herein, the term “storage operating system” gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and may, in the case of a node 700, implement data
access semantics of a general purpose operating system. Stor-
age operating system 750 may also be implemented as a
microkernel, an application program operating over a gen-
eral-purpose operating system, such as UNIX® or Windows
XP®, or as a general-purpose operating system with config-
urable functionality, which may be configured for storage
applications as described herein.

In addition, it will be understood to those skilled in the art
that the invention described herein may apply to any type of
special-purpose or general-purpose computer, including a
standalone computer or portion thereof, embodied as or
including a storage system. Moreover, the teachings of this
invention can be adapted to a variety of storage system archi-
tectures including, but not limited to, a network-attached
storage environment, a storage area network and disk assem-
bly directly-attached to a client or host computer. The term
“storage system” should further be taken broadly to include
such arrangements in addition to any subsystems configured
to perform a storage function and associated with other equip-
ment or systems. [t should be noted that while this description
is written in terms of a write any where file system, the
teachings of the present invention may be utilized with any
suitable file system, including but not limited to, a write in
place file system.

As described herein, the novel technique may advanta-
geously overcome deficiencies with the prior art by enabling
avolume caching operation to be automatically be performed
at select nodes in the cluster based on policy information
stored at a management console. The administrator of the
clustered storage system need not possess detailed knowl-
edge of the cluster topology, nor node-specific features, to
selectively implement volume caching on the nodes for accel-
erating data access. Instead, the administrator may simply
input policy information to a centralized management inter-
face for a cluster for implementation across the cluster. As the
cluster change over time to meet changing storage needs, the
novel technique of policy-based volume caching may provide
a more adaptive solution for optimizing cluster performance
without unwieldy interaction by the administrator.

Some embodiments may be conveniently implemented
using a conventional general purpose or a specialized digital
computer or microprocessor programmed according to the
teachings herein, as will be apparent to those skilled in the
computer art. Some embodiments may be implemented by a
general purpose computer programmed to perform method or
process steps described herein. Such programming may pro-
duce a new machine or special purpose computer for perform-
ing particular method or process steps and functions (de-
scribed herein) pursuant to instructions from program
software. Appropriate software coding may be prepared by
programmers based on the teachings herein, as will be appar-
ent to those skilled in the software art. Some embodiments
may also be implemented by the preparation of application-
specific integrated circuits or by interconnecting an appropri-
ate network of conventional component circuits, as will be
readily apparent to those skilled in the art. Those of skill in the
art would understand that information may be represented
using any of a variety of different technologies and tech-
niques.

Some embodiments include a computer program product
comprising a computer readable non-transitory storage
medium (media) having instructions stored thereon/in and,
when executed (e.g., by a processor), perform methods, tech-

10

15

20

25

30

35

40

45

50

55

60

65

18

niques, or embodiments described herein, the computer read-
able medium comprising sets of instructions for performing
various steps of the methods, techniques, or embodiments
described herein. The computer readable medium may com-
prise a storage medium having instructions stored thereon/in
which may be used to control, or cause, a computer to perform
any of the processes of an embodiment. The storage medium
may include, without limitation, any type of disk including
floppy disks, mini disks (MDs), optical disks, DVDs, CD-
ROMs, micro-drives, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash
memory devices (including flash cards), magnetic or optical
cards, nanosystems (including molecular memory ICs),
RAID devices, remote data storage/archive/warehousing, or
any other type of media or device suitable for storing instruc-
tions and/or data thereon/in.

Stored on any one of the computer readable medium (me-
dia), some embodiments include software instructions for
controlling both the hardware of the general purpose or spe-
cialized computer or microprocessor, and for enabling the
computer or microprocessor to interact with a human user
and/or other mechanism using the results of an embodiment.
Such software may include without limitation device drivers,
operating systems, and user applications. Ultimately, such
computer readable media further includes software instruc-
tions for performing embodiments described herein. Included
in the programming (software) of the general-purpose/spe-
cialized computer or microprocessor are software modules
for implementing some embodiments.

Those skilled in the art would further appreciate that the
various illustrative logical blocks, modules, circuits, tech-
niques, or method steps of embodiments described herein
may be implemented as electronic hardware, software-ex-
ecuting computer, firmware or combinations thereof. To illus-
trate this interchangeability of hardware and software-ex-
ecuting processor, various illustrative components, blocks,
modules, circuits, and steps have been described herein gen-
erally in terms of their functionality. Whether such function-
ality is implemented as hardware or software-executing pro-
cessor depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans
may implement the described functionality in varying ways
for each particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the embodiments described herein.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral-purpose processor, a digital signal processor (DSP), an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general-purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

While the embodiments described herein have been
described with reference to numerous specific details, one of
ordinary skill in the art will recognize that the embodiments
can be embodied in other specific forms without departing
from the spirit of the embodiments. Thus, one of ordinary
skill in the art would understand that the embodiments

US 9,348,712 B1

19

described herein are not to be limited by the foregoing illus-
trative details, but rather are to be defined by the appended
claims.

As used herein, the term “or” is inclusive unless otherwise
explicitly noted. Thus, the phrase “at least one of A, B, or C”
is satisfied by any element from the set {A, B, C} or any
combination thereof, including multiples of any element.

What is claimed is:

1. A computer-implemented method comprising:

after receiving policy information that indicates criteria for

volume caching operations in a storage system cluster,
determining attribute information of nodes in the storage
system cluster, wherein the criteria comprises node
attributes, operational events, and a cached volume con-
figuration;

determining, in relation to a first node, that the criteria

indicated by the received policy information are satisfied
based, at least in part, upon the determined attribute
information;

determining, in relation to a second node, that the criteria

indicated by the received policy information are satisfied
based, at least in part, upon the determined attribute
information;

requesting that the first node of the nodes perform a first

volume caching operation responsive to determining
that the criteria relating to the first node are satisfied
based, at least in part, on the attribute information for the
first node; and

requesting that the second node of the nodes perform a

second volume caching operation responsive to deter-
mining that the criteria relating to the second node are
satisfied based, at least in part, on the attribute informa-
tion for the second node.

2. The computer-implemented method of claim 1, wherein

requesting that the first node perform the first volume cach-

ing operation comprises requesting that the first node
delete a cached volume at the first node, wherein the first
subset of the criteria for volume caching corresponds to
a delete cached volume operation.

3. The computer-implemented method of claim 1, wherein

requesting that the second node perform the second vol-

ume caching operation comprises requesting that the
second node create a cached volume at the second node
in accordance with a pre-defined configuration from the
policy information, wherein the second subset of the
criteria for volume caching corresponds to a create
cached volume operation.

4. The computer-implemented method of claim 1 further
comprising:

determining that the attribute information for a third node

of the nodes has changed;
determining that the changed attribute information for the
third node satisfies the criteria for volume caching; and

requesting that the third node perform the first volume
caching operation in response to determining that the
changed attribute information for the third node satisfies
the criteria for volume caching.

5. The computer-implemented method of claim 1 further
comprising periodically requesting the nodes of the storage
system cluster for any updates to the attribute information.

6. The computer-implemented method of claim 1, wherein
the policy information also indicates a first set of nodes of the
nodes.

7. The computer-implemented method of claim 6, wherein
the policy information specifies a volume caching operation
for each of the first set of nodes, the method further compris-

10

15

20

25

30

35

40

45

50

55

60

20

ing requesting that each of the first set of nodes perform the
specified volume caching operation.

8. The computer-implemented method of claim 1, wherein
the criteria for volume caching are based on at least one of a
storage space related threshold, a cluster configuration, and a
node configuration.

9. The computer-implemented method of claim 1 further
comprising determining from the policy information a list of
nodes and a list of node attributes, wherein determining that
the first subset of criteria for volume caching and the second
subset of criteria for volume caching are satisfied uses the list
of nodes and the list of node attributes.

10. A non-transitory computer readable medium having
instructions stored therein, the instructions to:

determine attribute information for nodes in a storage sys-

tem cluster after receiving policy information that indi-
cates criteria for volume caching operations in the stor-
age system cluster, wherein the criteria comprises node
attributes, operational events, and a cached volume con-
figuration;

determine which of the criteria for volume caching is sat-

isfied based, at least in part, upon the determined
attribute information; and

for the criteria for volume caching that are satisfied, request

nodes with attribute information related to satisfaction
of the criteria for volume caching to perform a volume
caching operation corresponding to the criteria for vol-
ume caching.

11. The non-transitory computer readable storage medium
of claim 10, wherein the attribute information indicates for
each of the nodes:

an amount of available storage space of the node;

a type of storage object supported by the node;

a number of storage devices of the node; and

a workload of the node.

12. The non-transitory computer readable medium of claim
10, wherein the instructions to request nodes with attribute
information related to satisfaction of the criteria for volume
caching to perform a volume caching operation correspond-
ing to the criteria for volume caching comprises instructions
to request a node to delete a cached volume at the node.

13. The non-transitory computer readable medium of claim
10, wherein the instructions to request nodes with attribute
information related to satisfaction of the criteria for volume
caching to perform a volume caching operation correspond-
ing to the criteria for volume caching comprises instructions
to request a node to generate a cached volume at the node in
accordance with a pre-defined configuration from the policy
information.

14. The non-transitory computer readable medium of claim
10 further having instructions to:

determine that attribute information for a node of the nodes

has changed;

determine whether the changed attribute information sat-

isfies the criteria for volume caching; and

request that the node with the changed attribute informa-

tion perform a volume caching operation corresponding
to the criteria for volume caching satisfied by the
changed attribute information in response to a determi-
nation that the changed attribute information satisfies
the criteria for volume caching.

15. The non-transitory computer readable medium of claim
10 further having instructions to periodically request the
nodes of the storage system cluster for attribute information
updates.

16. An apparatus comprising:

a processor;

US 9,348,712 B1

21

a network interface; and

a computer readable medium having instructions stored
thereon, the instructions executable by the processor to
cause the apparatus to,

determine attribute information for nodes in a storage sys-

tem cluster after receiving policy information that indi-
cates criteria for volume caching operations in the stor-
age system cluster, wherein the criteria comprises node
attributes, operational events, and a cached volume con-
figuration;

determine which of the criteria for volume caching is sat-

isfied based, at least in part, upon the determined
attribute information; and

for criteria for volume caching that are satisfied, request

nodes with attribute information related to satisfaction
of'the subset of criteria for volume caching to perform a
volume caching operation corresponding to the criteria
for volume caching.

17. The apparatus of claim 16, wherein the attribute infor-
mation indicates for each of the nodes:

an amount of available storage space of the node;

a type of storage object supported by the node;

a number of storage devices of the node; and

a workload of the node.

18. The apparatus of claim 16, wherein the instructions
executable by the processor to cause the apparatus to request
nodes with attribute information related to satisfaction of the
criteria for volume caching to perform a volume caching
operation corresponding to the criteria for volume caching

10

20

22

comprises instructions executable by the processor to cause
the apparatus to request a node to delete a cached volume at
the node.

19. The apparatus of claim 16, wherein the instructions
executable by the processor to cause the apparatus to request
nodes with attribute information related to satisfaction of the
criteria for volume caching to perform a volume caching
operation corresponding to the criteria for volume caching
comprises instructions executable by the processor to cause
the apparatus to request a node to generate a cached volume at
the node in accordance with a pre-defined configuration from
the policy information.

20. The apparatus of claim 16, wherein the computer read-
able medium further has instructions executable by the pro-
cessor to cause the apparatus to:

determine that attribute information for a node of the nodes

has changed;

determine whether the changed attribute information sat-

isfies the criteria for volume caching; and

request that the node with the changed attribute informa-

tion perform a volume caching operation corresponding
to the criteria for volume caching satisfied by the
changed attribute information in response to a determi-
nation that the changed attribute information satisfies
the criteria for volume caching.

21. The apparatus of claim 16, wherein the computer read-
able medium further has instructions to periodically request
the nodes of the storage system cluster for attribute informa-
tion updates.

